Block of human heart hH1 sodium channels by amitriptyline.
نویسندگان
چکیده
Amitriptyline is a tricyclic antidepressant used to treat major depression and various neuropathic pain syndromes. This drug also causes cardiac toxicity in patients with overdose. We characterized the tonic and use-dependent amitriptyline block of human cardiac (hH1) Na(+) channels expressed in human embryonic kidney cells under voltage-clamp conditions. Our results show that, near the therapeutic plasma concentration of 1 microM, amitriptyline is an effective use-dependent blocker of hH1 Na(+) channels during repetitive pulses (approximately 55% block at 5 Hz). The tonic block for resting and for inactivated hH1 channels by amitriptyline (0.1-100 microM) yielded IC(50) values (50% inhibitory concentration) of 24.8 +/- 2.0 (n = 9) and 0.58 +/- 0.03 microM (n = 7), respectively. Substitution of phenylalanine with lysine at the hH1-F1760 position, a putative binding site for local anesthetics, eliminates the use-dependent block by amitriptyline at 1 microM. The time constants of recovery from the inactivated-state amitriptyline block in hH1 wild-type and hH1-F1760K mutant channels are 8.0 +/- 0. 5 (n = 6) and 0.45 +/- 0.07 s (n = 6), respectively. A substitution at either hH1-F1760K or hH1-Y1767K significantly increases the IC(50) values for resting and inactivated states of amitriptyline, but the increase is much more pronounced with the hH1-F1760K mutation. Because these two residues were proposed to form a part of the local anesthetic binding site, we conclude that amitriptyline and local anesthetics interact with a common binding site. Furthermore, at therapeutic concentrations, the ability of amitriptyline to act as a potent use-dependent blocker of Na(+) channels may, in part, explain its analgesic actions.
منابع مشابه
Block of human heart hH1 sodium channels by the enantiomers of bupivacaine.
BACKGROUND S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and c...
متن کاملStructural basis of differences in isoform-specific gating and lidocaine block between cardiac and skeletal muscle sodium channels.
Voltage-gated Na(+) channels underlie rapid conduction in heart and skeletal muscle. Cardiac sodium channels open and close over more negative potentials than do skeletal muscle sodium channels; heart channels are also more sensitive to lidocaine block. The structural basis of these differences is poorly understood. We mutated nine isoform-specific micro1 (rat skeletal muscle) channel residues ...
متن کاملIrreversible block of human heart (hH1) sodium channels by the plant alkaloid lappaconitine.
The roots from Aconitum sp. plants have long been used in Chinese herbal medicine for treating pain and various heart conditions. The principal component of Aconitum remedies is usually aconitine, a site 2 neurotoxin that may induce severe neurological symptoms and cardiovascular collapse. Some Aconitum species also contain lappaconitine, the structure of which is remarkably similar to that of ...
متن کاملCardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels
When lidocaine is given systemically, cardiac Na channels are blocked preferentially over those in skeletal muscle and nerve. This apparent increased affinity is commonly assumed to arise solely from the fact that cardiac Na channels spend a large fraction of their time in the inactivated state, which exhibits a high affinity for local anesthetics. The oocyte expression system was used to compa...
متن کاملEnhancing effects of salicylate on quinidine-induced block of human wild type and LQT3 related mutant cardiac Na+ channels.
It is unknown whether salicylate enhances the action of antiarrhythmic agents on human Na+ channels with state dependency and tissue specificity. We therefore investigated effects of salicylate on quinidine-induced block of human cardiac and skeletal muscle Na+ channels. Human cardiac wild-type (hH1), LQT3-related mutant (ΔKPQ), and skeletal muscle (hSkM1) Na+ channel α subunits were expressed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 292 3 شماره
صفحات -
تاریخ انتشار 2000